

Measurement of the Transverse Single Spin Asymmetry of $p^{\uparrow}+p \rightarrow \eta+X$ at $\sqrt{s}=200$ GeV

David Kleinjan
University of California, Riverside
For the PHENIX Collaboration

Outline

- Motivation
- Apparatus: RHIC, PHENIX, and the MPC
- η meson reconstruction
- Calculation of A_N
- Results
- Outlook

Definition of A_N for $p^{\uparrow}+p \rightarrow h+X$

 A_N : Difference in the **spin-dependent** cross-sections for **particle production**, as a fraction of the **total** cross-section for **particle production**.

$$A_{N} \equiv \frac{\sigma^{\uparrow}(\phi) - \sigma^{\downarrow}(\phi)}{\sigma^{\uparrow}(\phi) + \sigma^{\downarrow}(\phi)} = \frac{\Delta \sigma(\phi)}{\sigma(\phi)}$$
Left Right

- How do we measure A_N ?
- A_N is a "left-right" asymmetry
- Quantify the difference between hadron production to the left and right of p[†] + p collisions.

$$A_{N} = \frac{1}{P} \frac{N_{L}^{\uparrow} - N_{R}^{\uparrow}}{N_{L}^{\uparrow} + N_{R}^{\uparrow}}$$

Motivation

Fermilab E-704 experiment

Could be explained by

- Collins effect $A_N \propto \delta q(x) \cdot H_1^{\perp}(z, p_{h,T}^2)$
 - Transversity x spin-dep. fragmentation
- Sivers effect $A_N \propto f_{1T}^{\perp q}(x, k_T^2) \cdot D_q^h(z)$
 - Intrinsic- k_T imbalance
- Twist-3 effects (Qiu-Sterman, Koike)
- Combination of the above

Motivation

$A_{_{\rm N}}$ for η meson species measured to be non-zero

What is η meson A_N at \sqrt{s} = 200 GeV at PHENIX? Comparable to π^0 A_N or greater?

The measurement of η meson $A_{_{\rm N}}$ will help constrain theoretical models

RHIC at BNL

The Relativistic Heavy Ion Collider has provided longitudinally and transversely polarized proton beams at 62, 200, and 500 GeV

PHENIX Detector

- 2 Central Arms $|\eta| < 0.35$
 - Identified charged hadrons
 - π^0 , **mesons**, direct photon
 - J/ψ, heavy flavor
- Muon Arms
- 2 MPC Detectors $3.1 < |\eta| < 3.9$
 - π⁰,η mesons

MPC detector in PHENIX

- Electromagnetic Calorimeter
 - 2.2x2.2x18 cm³ PbWO₄ crystal towers
 - 220 cm from nominal interaction point
- 2 Detectors, North and South
- Capable of reconstructing
 - ightharpoonup η mesons (20 70 GeV)
 - Low Energy π^0 (7 17 GeV)
 - High Energy π^0 clusters (>17 GeV)

Reconstruction of η mesons

- Data set
 - 2008 Run @ RHIC

 - 5.2 pb⁻¹ integrated luminosity
 - 45% average beam polarization
- Triggers
 - Minimum Bias Event Trigger

$$0.2 < x_F^{} < 0.4 (1.0 < p_T^{} < 2.0 \text{ GeV/c})$$

$$M_n = 0.550 \pm 0.035 \text{ GeV/c}^2$$

High Energy Cluster Trigger

$$0.3 < x_F^{} < 0.7 (2.0 < p_T^{} < 4.5 \text{ GeV/c})$$

$$M_n = 0.556 \pm 0.031 \text{ GeV/c}^2$$

Asymmetries

- A_N is calculated in η mass region $(M_n \pm 2\sigma)$
- A_N is calculated in low, high mass regions and weighted together
- The background correction formula for A_{N} is

$$A_N^{\eta} = \frac{A_N^{peak} - r A_N^{bg}}{1 - r}$$

$0.2 < x_F < 0.3$	$0.3 < x_F < 0.4$	$0.4 < x_F < 0.5$	$0.5 < x_F < 0.6$	$0.6 < x_F < 0.7$
0.69	0.45	0.35	0.35	0.34

$$r = \frac{B}{S + B}$$

x_F dependence of η meson A_N

- There is a 5 to 10 percent positive A_N at positive X_F
- Weighted mean of negative x_F values is 0.022 \pm 0.011

$p_{\scriptscriptstyle T}$ dependence of η meson $A_{\scriptscriptstyle N}$

- Positive p_T dependent A_N for $x_F > 0.2$
- No clear sign of high p_T decrease

Comparison to other Forward π^0 A_N results

• η meson $A_{_N}$ compared to several π^0 meson $A_{_N}$

Comparison to MPC Cluster A_N

- Same Data Set (RHIC 2008 run)
- Cluster A_N expected to be ~90% merged π^0 clusters

Comparison to PHENIX Central Arm A

- Central Rapidity consistent with zero
- Forward Rapidity positive $(x_F > 0.2)$

Comparison to other Forward η meson $A_{_{\rm N}}$ results

The measurement of η meson $A_{_{N}}$ comparison

No sharp rise above $0.55 x_F$ as seen by STAR

Conclusions & Outlook

Conclusions

- η meson x_F dependence of A_N results similar to previous π^0 results.
- η meson p_T dependence of A_N results show clear positive asymmetry to 4.5 GeV/c

- Outlook
 - Detailed simulation study of background
 - The cross section will be calculated

Thank you!

Backup

Forward Single Cluster A_N x_F, binning

Motivation

$\mathbf{A}_{\scriptscriptstyle N}$ measured at various collision energies to be non-zero

$$x_F = \frac{2p_l}{\sqrt{S}}$$

i.e. fraction of proton energy given to forward momentum of hadron

Collinear pQCD at leading twist interaction has small spin dependence, i.e. no asymmetry

Can initial or final state effects produce a nonzero asymmetry?

Origin of A_N from $p + p^{\uparrow} \rightarrow h + X$

Proton Structure $\frac{d^{3}\sigma(pp \rightarrow hX)}{dx_{1}dx_{2}dz} \propto q_{1}(x_{1}) \cdot q_{2}(x_{2}) \times \frac{d^{3}\hat{\sigma}^{\uparrow}(q_{1}q_{2} \rightarrow q_{1}q_{1})}{dx_{1}dx_{2}} \times FF_{q_{k}q_{1}}(z, p_{h,T})$ Eversity" quark-distributions $\frac{d^{3}\sigma(pp \rightarrow hX)}{dx_{1}dx_{2}} \propto q_{1}(x_{1}) \cdot q_{2}(x_{2}) \times \frac{d^{3}\hat{\sigma}^{\uparrow}(q_{1}q_{2} \rightarrow q_{1}q_{1})}{dx_{1}dx_{2}} \times FF_{q_{k}q_{1}}(z, p_{h,T})$ Eversity" quark-distributions

- "Transversity" quark-distributions and Collins fragmentation
 - Correlation between protonspin and quark-spin and spin dependent fragmentation
- $A_N \propto \delta q(x) \cdot H_1^{\perp}(z, p_{h,T}^2)$

- Sivers quark distribution
 - Correlation between proton spin and transverse quark momentum
- Higher Twist Effects

$$A_N \propto f_{1T}^{\perp q}(x, k_T^2) \cdot D_q^h(z)$$

function

Polarized Beams

- Both beams polarized
- Variation of bunch polarization direction minimizes systematic uncertainties in measurement
- For transversely polarized beams, allows for two independent A_N measurements

